msgbartop
Winter is coming…
msgbarbottom

21 sep 20 Alimentación eléctrica. Conversión DC-DC

Esta entrada es la parte 6 de 7 de la serie Gateway LoRaWAN

El último elemento de la instalación eléctrica que es necesario considerar es el conversor DC-DC del que es necesario disponer para poder alimentar el gateway desde la instalación solar. Como se comentó al comienzo de esta serie, mi idea es alimentar el gateway haciendo uso de un panel solar que he reinstalado en el tejado, y del que ya disponía producto de un proyecto previo. El panel solar se encuentra conectado a un controlador, que usa una batería para almacenar energía, y del que se puede extraer una conexión en corriente continua a 12v. Un esquema general de la instalación sería el siguiente:

solar-panel-charge-controller-wiring-diagram

Llegados a este punto, es preciso alimentar el dispositivo Heltec LoRa 32 que constituye el componente central del gateway. De acuerdo al diagrama de conexionado proporcionado por el fabricante, el dispositivo se puede alimentar, bien mediante la entrada micro-USB disponible, mediante corriente de entrada a 5v utilizando el patillaje correspondiente:

eda042713108809e3511e822a1aa4e582ee70ebc

Para este proyecto lo más sencillo es utilizar un conversor DC-DC que nos baje el voltaje de los 12v que proporciona el controlador a los 5v que necesita el dispositivo. En mi caso, estoy utilizando un convertidor variable, un HiLetGo MP1584EN, que es capaz de manejar voltajes de entrada de 4,8v a 28v, y proporcionar voltajes de salida desde 0,8v hasta 20v. El voltaje de salida se puede ajustar mediante un tornillo, que en nuestro caso giraremos para que nos proporcione 5v. Este módulo tiene como característica interesante adicional el que puede proporcionar hasta 3A de corriente de salida, lo que lo hace sumamente versátil para este tipo de instalaciones.

IMG_20200921_192125645_1

La instalación es sencilla. Es cuestión de conectar los bornes de entrada del módulo a los bornes correspondientes del controlador, respetando las polaridades, y los bornes de salida del módulo a los pines correspondientes del Heltec. Y a partir de ahí, a consumir energía solar del sistema. :mrgreen:

VN:F [1.9.20_1166]
Rating: 10.0/10 (1 vote cast)

Etiquetas: , , ,

30 sep 20 Un gateway LoRaWAN de un canal. Trasteando con el protocolo

Esta entrada es la parte 7 de 7 de la serie Gateway LoRaWAN

Comentaba en un artículo anterior de la serie que había implementado un gateway LoRa*. Y no me faltaba razón. Estaba haciendo uso del protocolo LoRa de enlace basado en 868 MHz para enviar señales de entre un nodo emisor y un receptor, y de este último a un servidor MQTT. ¿Cuál es la diferencia? La más importante es que no estaba realizando ningún tipo de verificación de nodos, sin ni siquiera molestarme en verificar cuál es el emisor y cuál el receptor. Y ni hablemos de cifrado de comunicaciones ni nada que se le parezca. Pero para las pruebas preliminares que venía efectuando, en lo que el aspecto importante era verificar alcance entre nodos, sobraba y bastaba. Por cierto, para ver más detalles de las diferencias entre LoRa y LoRaWAN, tengo otro artículo dedicado a tal efecto.

Pero para este proyecto necesitaba dar un paso más allá, e implementar un verdadero gateway LoRaWAN. Y eso implicaba hacer uso de una red LoRaWAN, que proporcione su servidor de procesado de tráfico de red, y te permita explotar los datos enviados desde los dispositivos. Cuando te enfrentas a esto, tienes dos posibilidades: o te implementas la red, o te conectas a una ya existente. Sobre la primera opción ya hablaremos más adelante, en un artículo al respecto, pero para salir rápidamente del paso hice uso de la segunda. Existe una red pública a la que puedes conectar gateways y dispositivos LoRaWAN, que es la red The Things Network, o TTN. Cuando te registras como usuario, puedes añadir a la red tanto dispositivos como gateways. Si haces lo primero, dependes de que haya algún gateway cercano a ti para que tus dispositivos envíen datos a la red. Pero si no tienes ningún gateway a tu alcance, no te queda otra que implementar un gateway, y conectarlo a la red. Que es precisamente de lo que va esta serie.

Tengo que decir algo desde un principio: estoy haciendo trampas. Una de las especificaciones del protocolo LoRaWAN es que a la hora de establecer un enlace entre dispositivo y gateway se puede utilizar de manera aleatoria cualquier canal de la banda que estés utilizando. En el caso de Europa, la banda es la de 868 MHz, y existen 9 canales dedicados a tal efecto (aunque en realidad son 8+1). La razón para ello es evitar la congestión en cualquiera de los canales, siendo la red la encargada de analizar esta circunstancia, y la responsable de tomar las medidas necesarias (cambio de canal) para solucionarlo. Para ello, la idea es que cuando se configura un nuevo gateway, tu hardware tiene que estar preparado para operar en estos canales. El problema, en mi caso, es que el hardware del que dispongo sólo es capaz de funcionar en un solo canal. ¿Y cuál es este hardware? Nuestro viejo amigo el Heltec LoRa 32.

IMG_20200930_202951961~2.jpg

Tras trastear un poco por Internet, encontré un proyecto bastante interesante de Things4U que consiste exactamente en eso: implementar un gateway de un solo canal. Por supuesto, es un proyecto experimental que no debe usarse en un sistema en producción, pero para mis propósitos de investigación basta y sobra. La instalación es bastante sencilla: tan simple como descargar el código (viene con todas sus librerías), y en el caso de Arduino, hacer lo siguiente:

  • Crear un proyecto, y copiar al mismo el contenido del directorio ESP-sc-gway. Por otro lado, copiar el contenido del directorio lib en el directorio libraries de tu instalación de Arduino.
  • Por otro lado, editar el contenido de los ficheros configGway.h y configNode.h, que permiten establecer los parámetros de red WiFi a la que conectarse, modelo de dispositivo utilizado (Heltec, en mi caso), banda a utilizar (868), y algunos elementos adicionales como a qué nodo de la red TTN conectarse.
  • Compilar y listo. El dispositivo levanta una interfaz web que permite verificar el funcionamiento del mismo y cambiar algunos parámetros en tiempo de ejecución, y muestra información del comportamiento del dispositivo en la pantalla de cristal líquido.
Screenshot_20200927-103047.png

Captura de pantalla de la web de administración del gateway

Si todo ha ido bien, tu gateway se conectará a la red TTN (donde es preciso configurar tu gateway, aunque por lo que he visto no parece interactuar demasiado bien con la información de estado del mismo), y es cuestión de encender un dispositivo, empezar a emitir, y ver entrar los paquetes en tu aplicación:

Screenshot_20200927-103236.png

…sí claro. Ojalá. :mrgreen: Y es que hay un pequeño problema. Con esto hemos configurado nuestro gateway para que trabaje en un solo canal, pero por defecto nuestro dispositivo trabajará en cualquier canal de la banda, de manera aleatoria. Y esto implica que sólo vamos a recibir, estadísticamente hablando, 1 de cada 9 paquetes enviados. Una tasa bastante baja. ¿Cuál es la solución? Obviamente, forzar al dispositivo a emitir en una sola banda. Existe un tutorial de Sparkfun que lo explica bastante bien, pero para el caso de los dispositivos Heltec LoRa es necesario trastear un poco más, y especificar los valores del dispositivo:

const lmic_pinmap lmic_pins = {
.nss = 18,
.rxtx = LMIC_UNUSED_PIN,
.rst = 14,
.dio = {26, 35, 33},
};

…y con eso, ¡listos! Bueno, casi. Para los Heltec LoRa 32 vale, pero por desgracia no para los Cube Cell que estoy empleando, ya que las implementaciones de la librería LMIC que he encontrado no parecen funcionar bien con estos dispositivos. ¿La solución? Ser un poco más imaginativo. En mi caso, he modificado los parámetros de la librería LoRaWan_APP del fabricante, para hacer que todas las definiciones de la banda de 868 MHz trabajen exactamente en la frecuencia del canal 0, que es que se utiliza por parte del servidor. En concreto, se trata de localizar el fichero RegionEU868.h (en el directorio packages\CubeCell\hardware\CubeCell\1.x.0\cores\asr650x\loramac\mac\region), y modificar lo siguiente:

#define EU868_LC1 { 868100000, 0, { ( ( DR_5 < < 4 ) | DR_0 ) }, 1 }

/*!
* LoRaMac default channel 2
* Channel = { Frequency [Hz], RX1 Frequency [Hz], { ( ( DrMax << 4 ) | DrMin ) }, Band }
*/
#define EU868_LC2 { 868100000, 0, { ( ( DR_5 < < 4 ) | DR_0 ) }, 1 }

/*!
* LoRaMac default channel 3
* Channel = { Frequency [Hz], RX1 Frequency [Hz], { ( ( DrMax << 4 ) | DrMin ) }, Band }
*/
#define EU868_LC3 {868100000, 0, { ( ( DR_5 < < 4 ) | DR_0 ) }, 1 }

#define EU868_LC4 { 868100000,0, { ( ( DR_5 < < 4 ) | EU868_TX_MIN_DATARATE ) }, 0 }
#define EU868_LC5 { 868100000,0, { ( ( DR_5 < < 4 ) | EU868_TX_MIN_DATARATE ) }, 0 }
#define EU868_LC6 { 868100000,0, { ( ( DR_5 < < 4 ) | EU868_TX_MIN_DATARATE ) }, 0 }
#define EU868_LC7 { 868100000,0, { ( ( DR_5 < < 4 ) | EU868_TX_MIN_DATARATE ) }, 0 }
#define EU868_LC8 { 868100000,0, { ( ( DR_5 < < 4 ) | EU868_TX_MIN_DATARATE ) }, 0 }

Sí, es una ñapa. Pero una ñapa que funciona. :mrgreen: Una vez hecho esto y subido el código al Cube Cell, todo va como la seda. Y aprovechando que me encontraba en Córdoba, me decidí a hacer algunas pruebas adicionales de transmisión de datos: un verdadero (bueno, de aquella manera) gateway LoRaWAN conectado a la red TTN, y un dispositivo emitiendo de manera periódica una información sencilla (00 01 02 03). La idea era probar la transmisión en un entorno urbano, con orografía acusada, y sin visibilidad directa, y con el emisor haciendo uso de las antenas por defecto que proporciona el fabricante. Nada de antenas avanzadas. Y el resultado fue bastante mejor del esperado. EL sistema pudo cubrir sin interrupciones todo el parque de la Asomadilla con un único gateway, incluso en zonas donde la curvatura del terreno oculta de manera total el emisor del receptor.

20200926_202706.jpg

Emisor en el punto más alejado del parque

Como comentaba, el sistema fue capaz de proporcionar cobertura en todo el Parque de la Asomadilla de Córdoba.

20200926-asomadilla.JPG

Imagen de la zona cubierta

Es de esperar que en una zona con una ubicación óptima (zona alta del parque) la zona de cobertura fuera muy superior. Pero eso ya quedará para otro día.

VN:F [1.9.20_1166]
Rating: 0.0/10 (0 votes cast)

Etiquetas: , , , , , , ,